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PREFACE

This report presents a relatively simple method by which
aerodynamic drag effects can accurately be taken into
account in the prediction of model rocket peak altitudes. With
this data, altitudes can be determined for any rocket using
any of the Estes motors (including 2 or 3 stage vehicles and
cluster-powered rockets). In addition, flight times can be eas-
ily found so that optimum engine delay times can be selected.

Using this simple method for calculating aerodynamic drag
effects, many interesting experiments and research projects
can be initiated which would have previously been too labori-
ous for easy analysis. Examination of the easy-to-read
graphs and a few simple arithmetic calculations will enable
you to accurately predict the performances of your model
rockets with different Estes engines. Also, a basic under-
standing of the principles of aerodynamics and the aerospace
sciences can be obtained by performing the simple drag
experiments suggested at the end of this report.
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INTRODUCTION

When rocketeers get together, the subject for discussion is
often “How high do our rockets go?” A good solution to this prob-
lem has many uses in rocket design from building the wildest
sporter to perfecting the sleekest altitude model.

This report presents the technique of conveniently calculating
all the pertinent parameters you need: burnout altitude and
velocity, peak altitude and coast time to peak. The technique is
useful for all types of models including clustered rockets, staged
rockets and boostgliders.

For example, with the information you calculate you can pick
the optimum weights for the engines you use, the best engine for
your model weight and the correct delay time for your engine and
model combination. You can investigate the performance
change due to variation of parameters such as weight, diameter
and drag. Further investigation can tell you if the weight of a
modification will be offset by reduced drag or vice-versa.

A complete “parameter trade-off study” could be a prize win-
ning science fair project and should be part of any high perform-
ance rocket design.
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THEORETICAL “NO DRAG” CONDITIONS
VERSUS ACTUAL FLIGHT CONDITIONS

In the June 1964, “Rocket Math” article (reference I, page
36) it was pointed out that “typically, drag will reduce the
peak altitude of a shortened Astron Streak* with a 1/2 A8-4*
engine aboard from a theoretical drag free 1935 feet to an
actual 710 feet”. What this means is simply that merely due
to the effect of air the altitude has been cut to less than half.
The big questions is, “Why is this effect so great and what is
happening to the rocket to cause such a difference?”

To better understand the effect of the atmospheric
forces that retard the forward motion of the rocket (We are
talking about “drag” again) let us consider the following
example. Suppose we have a one inch diameter rocket
(approximate size of BT-50) traveling at 100 ft./sec. We
can determine the number of air molecules which collide
with our rocket each second by using Loschmidts number,
which is the number of molecules in a cubic centimeter of
gas under “standard atmosphere” conditions (temperature
of 32˚ F or 0˚ C) and pressure of 14.7 pounds per square
inch, or 76 cm of mercury or 10.1 newton-seconds /cm).

It turns out that during each second of flight time our
100 ft./sec. rocket has to push its way through approxi-
mately 400,000,000,000,000,000,000,000 molecules that
lie in its path. (Scientists and engineers usually write out

such large numbers in the form 4 x 1023, which means 4
followed by 23 zeros).

Even though molecules are very small, this extremely
large number of them can add up to a drag force of about
1 ounce acting continuously at a speed of 100 ft./sec.
Since drag is proportional to the square of the velocity,**
we would then have 4 ounces of drag at 200 ft./sec. and 9
ounces of drag on the rocket at 300 ft./sec. (approximately
200 miles per hour).

Fortunately, the full effect of these molecules sitting in
the path of our rocket can be avoided by good streamlin-
ing. In this way, most of the molecules are compressed in
layers that tend to flow smoothly around the nose and
body tube as the rocket passes by them. Relatively few
molecules are really rammed head-on.

*This rocket or engine is no longer available.

**The square of a number is obtained by multiplying the
number times itself.

These millions of impacts constitute the effects more
commonly known as “aerodynamic drag” on a rocket or,
more simply, as just “drag”. Drag on any object has been
found to follow this law:

D = CDA1/2 ρ V2
D is the drag force.
CD is a dimensionless “aerodynamic drag coefficient”

that depends upon the shape and the surface 
smoothness of the object.

A is the reference area of the object (for model rock
ets we use the cross sectional area of the body 
tube as the reference)
(pronounced “row”) is the density of the medium 
through which the object is moving (submarine 
designers use the density of water in their drag 
computations, while model rocketeers use the 
density of air). The density symbol “ρ” is the 
Greek letter RHO.

V is the velocity of the object

The full importance of drag has yet to be realized by
most model rocketeers. It is hoped that through the use of
the altitude prediction method presented herein that a more
complete understanding of its effects will be acquired by all.

AERODYNAMIC DRAG COEFFICIENT
The Aerodynamic Drag Coefficient (CD) is a meas-

ure of how easily a given shape moves “through” (passes
by) the molecules of air.

For example, a cube traveling with a flat side forward
has a CD of 1.05. The following table gives you an idea of
the importance of streamlining in reducing the aerody-
namic drag coefficient.

Objects CD
Cube (flat side forward) 1.05

Sphere (as a marble) .47

“Clipped” teardrop (streamlined
teardrop shape with 1/3 of length
removed at trailing edge) .1

Streamlined teardrop shape .05

DISCUSSION OF DRAG

ρ
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DRAG FORM FACTOR
The product of the aerodynamic drag coefficient (CD)

and the frontal area of the object (A) is commonly referred
to as the Drag Form Factor (CDA) of the object.

Bodies with identical drag form factor will have identi-
cal drag value at any given speed.

For example, a one-inch cube moving with a flat side
forward would have a drag form factor of 1.05 inch2 (1.05
square inches). The data below provides additional exam-
ples to show the tremendous effect streamlining has on
the drag of a body as reflected in the object’s drag form
factor. To provide easy comparisons, a drag form factor
(CDA) of 1.05 inch2 has been selected.

Frontal Area of Object x Drag Coefficient = Drag Form
Factor 

This makes quite clear the great effect streamlining has
on reducing drag. A streamlined teardrop with a frontal
area of 21 square inches has the same drag form factor
as a 1 inch cube.

The drag form factor for most models using standard
Estes body tubes may be easily determined by consulting
Figure 1, page 6. This graph was derived by calculating
the cross-sectional area of each body tube and plotting
this as a Pressure Drag Coefficient (CD) of 1.0.
Although the effective drag is not 100% of the cross-sec-
tional area, the drag form factor for most body tubes at
any selected pressure drag coefficient can be readily
read from the graph or calculated should it occur beyond
the limits of the graph.

“Aerodynamic Drag of Model Rocket,” by G.M.
Gregorek (Estes Technical Report TR-11), gives a much
more complete discussion on drag than is contained in this
report. Refer to TR-11 on drag to gain a more complete
insight into the forces affecting drag on model rockets.

DISCUSSION OF THE 
BALLISTIC COEFFICIENT

Model rockets with high ballistic coefficients will
reach higher altitudes than models with lower ballistic
coefficients for a given weight and motor type.

There are several factors that affect the altitudes our
rockets will reach. These factors are: the Drag Coefficient
(CD), the frontal area of the rocket (A), the rocket weight
(W), the amount of propellant burned during thrusting (Wp),
the type of motor used (D13 down to 1/4A) and even the
temperature of the air and the altitude of the launch site.

The graphs in this report were made possible by com-
bining several of these variables into one new variable call

the Ballistic Coefficient β (Greek letter BETA).

The ballistic coefficient is the ratio of the rocket weight
divided by the drag form factor (CDA), where the frontal
area (A) is based on the body tube cross section area. The
ballistic coefficient β is widely used by aerospace engineers
as a trajectory parameter for space vehicles that are re-
entering the atmosphere. It is also used by rifle designers
who have to determine the best shape and weight of a bul-
let to use to obtain a given range and striking power.

A spacecraft with a high ballistic coefficient will come
through the atmosphere faster than one with a low ballistic
coefficient for a given set of initial re-entry conditions. A
rifle bullet with a high ballistic coefficient will not slow down
as fast as one with a lower ballistic coefficient.

SAMPLE PROBLEM
Assume that you have a model rocket that weighs 0.43

ounces without engines. An A8-3 engine is used to power
the rocket. The rocket uses a BT-20 body tube. Assume
an aerodynamic drag coefficient (CD) of 0.75. This
value is presented on page 94 of G.H. Stine’s Handbook of
Model Rocketry. Experiment 2 on Drag Coefficient
Measurement will enable you to make your own decision
on the validity of 0.75 for the CD.

The numbers refer to the numbered steps in the
instructions. (Refer to the instructions on page 3.)

1. Rocket empty weight =  0.43 oz.
A8-3 engine weight =  0.57 oz.
Weight of rocket with engine =  1.00 oz.
BT-20 tube: Diameter = .736 in.
CD=.75 (assumed)

2. Using a CD of 0.75 and a BT-20 body tube we con-
sult the graph labeled Figure 2 and find that the drag form
factor (CDA) is 0.33 in.2

3. The next step is to calculate the ballistic coefficient
of the rocket during powered (thrusting) flight. The aver-
age weight of the rocket (includes weight of rocket and
engine) is used in this calculation. The average weight is
the initial weight (WI) minus one-half of the propellant
weight (1/2 Wρ). Refer to Figure 5A for the necessary
data on A8-3 engines. The equation for calculating the
ballistic coefficient during thrusting (Thrusting β) is

This quantity, the thrusting ballistic coefficient, gives
you an idea of the amount of mass per square inch of
frontal area. This should help you to better understand
how well the rocket can travel during thrusting. The higher
the ballistic coefficient during thrusting, the faster the
rocket can travel for a given amount of thrust.

A X CD =         CDA

1 inch2 cube X 1.05 = 1.05 inch2

2.23 inch2 sphere X .47 = 1.05 inch2

10.5 inch2 clipped X .1 = 1.05 inch2

teardrop
21 inch2 teardrop X .05 = 1.05 inch2

β = –––––
W

CDA

β = ––––––––Thrusting
WI -1/2 Wp

CDA

= ––––––––––––––1.00 oz. -0.055 oz.
0.33 inch2

= –––––––––
0.945 oz.

0.33 inch2

= 2.86 ounces per square inch



4. Once the thrusting ballistic coefficient has been
determined, refer to the graphs for the A8 engine to deter-
mine the burnout velocity and burnout altitude for this
rocket.

SB = burnout altitude from Figure 5A = 61 ft.
VB = burnout velocity from Figure 5B = 295 ft. per

second
5. Once the propellant is gone, calculations for the

coasting phase of the flight should use the coasting bal-
listic coefficient which is calculated using the weight of
the rocket vehicle plus the weight of the engine without
propellant. The equation for calculating the ballistic coef-
ficient during coasting (Coasting β) is  

The coasting ballistic coefficient gives you an idea of
the amount of mass per square inch of frontal area during
coasting. The higher the coasting ballistic coefficient,
the greater the distance the rocket can coast for a given
velocity. A low coasting ballistic coefficient indicates a
rocket with relatively high drag.

6. The distance which the rocket will coast upward is read
from the Coasting Altitude graph.

Coasting altitude from Figure 11A = 510 feet

7. Determine the total altitude the rocket can reach by
adding together the burnout altitude and the coasting
altitude.

SB = Burnout altitude = 61 ft.
SC = Coasting altitude =    510 ft.

571 ft.

8. The time that the rocket will coast is determined from
the Coasting Time graph.

tc = Coasting time from Figure 11B = 4.9 seconds

Since we selected an A8-3 engine, the rocket will not reach
the maximum possible altitude before parachute ejection. The
A8-5 engine (no longer available) should be used rather than
the A8-3 engine if maximum altitude is to be reached.

ACCURACY OF THIS METHOD 
FOR CALCULATING ALTITUDES

Does a question arise in your mind about the accuracy
of this method?  Can something this easy be correct?  Those
of you who have the June, 1964 issue of Model Rocket News
can check that the altitude found for a rocket without consid-
ering drag was 2600 feet while the same rocket launched
with the old A8-4 engine (no longer available) was 750 feet.

This indicates that the altitude calculations which ignored the
effects of drag had an error of over 300% as compared to
altitude calculations which included drag.

EFFECTS OF STREAMLINING
Now let’s take a quick look at some of the effects

“streamlining” can have for the same rocket. Suppose we
have two people build this same rocket. Bill’s is unpainted,
unsanded and the fins are square. Carl’s bird, on the other
hand, has a beautiful smooth paint job, is fully waxed and
the fins have a nice airfoil shape. For comparison purposes
let’s assume Bill’s aerodynamic drag coefficient has
increased 20% over the CD of 0.75 we previously used
(Bill’s CD now equals 0.9) and Carl’s drag coefficient has
been reduced by 20% (Carl’s CD now equals 0.6).

Going through the same steps of the sample problem,
you will find Bill’s rocket will reach 530 feet while Carl’s will
reach 621 feet.

As one becomes familiar with the method in this report
you can find many other interesting aspects of aerodynam-
ics to consider. It is very easy to investigate the effect on
performance of any of the variables by just computing alti-
tudes for various engine types, heavier and lighter rocket
weights and different values of drag. With this kind of
approach, one soon gains a real understanding of these
previously abstract principles.

INSTRUCTIONS FOR USING THE 
GRAPHS ON THE FOLLOWING PAGES
The basic steps in calculating the altitude that will be

reached by a specific model rocket powered by a specific
type of model rocket engine are as follows:

1. Gather data on a specific example -
a) Find frontal area of model rocket (body tube size).

A few simple calculations using only arithmetic opera-
tions (adding, subtracting, multiplying and dividing) plus
use of the graphs on the following pages will enable you to
calculate with reasonable accuracy the altitudes to which
your model rockets will fly with different engines.
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β = ––––––Coasting
WI Wp
CDA

= ––––––––––––––
1.00 oz. -0.110 oz.

0.33 inch2

= –––––––––
0.89oz.

0.33 inch2

= 2.70 ounces per square inch

Five problems are explained and solved on pages 26-34. To
gain skill in using these graphs, you can solve a problem, then
check your work against the complete solution for that problem.

“STREAMLINING” - ITS EFFECT ON DRAG

Bill Carl

Drag Coefficient (CD) .9 .6

Thrusting Ballistic 
Coefficient (βt) 2.42 oz./in.2 3.63 oz./in.2

Burnout Altitude (SB) 60 ft. 61 ft.

Burnout Velocity (VB) 280 ft./sec. 285 ft./sec.

Coasting Ballistic 
Coefficient (βC) 2.28 oz./in.2 3.42 oz./in.2

Coasting Altitude (SC) 470 ft. 560 ft.

Coast Time (tc) 4.6 sec. 5.3 sec.

Total Altitude (SB+SC) 530 ft. 621 ft.
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b) Determine weight of the model rocket without engine
(from catalog or by actually weighing the model).

c) Secure weight of the engine and weight of the 
propellant (from catalog).

2. Determine the drag form factor (CDA). This can be
done for model rockets made with standard Estes
body tubes by reference to Figure 2.

3. Calculate the ballistic coefficient (βt) of the model
rocket during thrusting -

4. Read the burnout altitude (SB) and the burnout
velocity (VB) from the appropriate graphs.

5. Calculate the new ballistic coefficient (βc) for model
rocket during coasting. (All of the propellant is gone) -

6. Read coasting altitude from the appropriate graph.

7. Determine altitude your model rocket will reach by 
adding the coasting altitude to the burnout altitude.

8. Determine the coasting time from the appropriate
graph and check to be sure that you selected an
engine with the proper delay.

CLUSTERED ROCKETS APPLICATION
The charts can also be used for any identical type motors

clustered in a stage by making the following modifications.
During thrusting use the VB and SB graphs with

WI =             Actual Weight               =     Wactual

Number of motors in cluster              N
and:

βT =   Wactual - N (1/2WP)
CDA

During coasting use:

βc = Wactual - N(WP)
CDA

Nothing else is required.
As an example, let’s look at the Gemini-Titan GT-3 (no

longer available) powered by two B6-4 engines. Its body is
a BT-70 tube, and let’s again assume CD = .75. The rock-
et weighs 3.8 ounces.

Now:
WI  =        Wactual

Number of Motors

= 3.8 oz. + 2(0.78 oz)
2

= 2.68 oz.
CDA = 2.85 in.2

βt  = Wactual -N(1/2WP)
CDA

= 5.36 oz. - 2

2.85 in.2

= 1.80

SB from figure 7A = 84 ft.

VB from figure 7B = 175 ft./sec.

βc = Wactual - N(WP)
CDA

= 5.36 oz. - 2(0.22 oz.)

2.95 in.2

= 1.67 oz.
in.2

SC from figure 11A = 230 ft.

Apogee point = SB + SC
= 84 ft/ + 235 ft.

= 319 ft.

tc = 3.3 sec.

Note that our choice of a 4-second delay will pop the
parachute close to the apogee.

THE EFFECT OF LAUNCH ALTITUDE AND
LAUNCH TEMPERATURE VARIATIONS

Our basic drag equation D = CDA 1/2 ρV2 shows that
the drag force (D) is among other things proportional to air
density (ρ). Density of the air is both a function of altitude
and temperature. Figure 1 presents a correction factor (K)
for density that is based on the tabular data presented on
page 92 or G.H. Stine’s Handbook (reference 4). This fac-
tor (K) can fortunately be included in the ballistic coeffi-
cient (β) as follows:

Altitude calculations are performed just as described
before with the exception of this single modification. The
reason it can be included at right in the ballistic coefficient
will become apparent to those who follow the derivation of
the motion equations.

β =  ––––––––Thrusting
WI 1/2Wp

CDA

β =  ––––––––W
CDA K

β =  ––––––––Coasting
WI Wp

CDA

0.22 oz.
2

oz.
in.2

(      )
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1A Astron Alpha (no longer available)

Now let’s try a simple problem with a real model rocket,
using only the necessary information. If you do not under-
stand a step, refer back to the instructions and the sample
problem.

1. Body diameter = 
Rocket empty weight = 
Engine = A8-3

Weight = 
Propellant weight =

WI =
=
=

2. CDA = 

3. Thrusting β = __________________

= __________________

= __________________

= __________________

= 

4. Burnout Altitude from Figure 5A = 
Burnout Velocity from Figure 5B =

5. Coasting β = _______________

= _______________

= _______________

=

6. Coasting Altitude = 

7. Apogee point =

=

= 379 ft.

8. Coasting Time = 4.0 sec.

Since our A8 engine also comes with a 4-second delay,
and the coasting time is 4 seconds rather than 3 seconds,
the A8-5 (no longer available) engine should be used.

Refer to page 28 for a complete solution to this
problem.

WORK AREA
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2A BIG BERTHA®

To gain experience in understanding and using this sys-
tem, calculate the performance of a Big Bertha®. After
completing you calculations, check your results with the
results shown on the next page.

1. Body diameter = 
Rocket empty weight = 
Engine = B4-2

Weight = 
Propellant weight =

WI = 
=
=

2. CDA =

3. Thrusting β = _________________

= _________________

= _________________

= _________________

= 

4. Burnout Altitude from Figure 6A = 
Burnout Velocity from Figure 6B = 

5. Coasting β = _____________

= _____________

= _____________

= 

6. Coasting Altitude = 

7. Apogee point  =

=

=

8. Coasting time  =

WORK AREA

Check your answers with those on the next page.
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1B ASTRON ALPHA (no longer available)

1. Body diameter = BT - 50 - 0.976 in.
Rocket empty weight = 0.8 oz.
Engine = A8-3
Weight = 0.57 oz.
Propellant weight = 0.110 oz.

WI = Rocket empty weight + Engine weight

= 0.8 oz. + 0.57 oz.
= 1.37 oz.

2. CDA = 0.55 in.2

3. Thrusting β = WI - 1/2 Wp

CDA

= 1.37 oz. - 1/2(0.110 oz.)

0.55 in.2

= 1.37 oz. - 0.055 oz.

0.55 in.2

= 1.315 oz.

0.55 in.2

= 2.39 oz./in.2

4. Burnout Altitude from Figure 5A = 44 ft.
Burnout Velocity from Figure 5B = 210 ft./sec.

5. Coasting β = WI - Wp

CDA

= 1.37 oz. - 0.110 oz.

0.55 in.2

= 1.26 oz.

0.55 in.2

= 2.29 oz./in.2

6. Coasting Altitude = 335 ft.

7. Apogee point = Burnout Altitude + Coasting Altitude

= 44 ft. + 335 ft.
= 379 ft.

8. Coasting Time = 4.0 sec.

2B  BIG BERTHA®

1. Body diameter = BT-60-1.637 in.
Rocket empty weight = 2.2 oz.
Engine = B4-2

Weight = 0.70 oz.
Propellant weight = 0.294 oz.

WI = Rocket empty weight + Engine weight

= 2.2 oz. + 0.70 oz.
= 2.9 oz.

2. CDA = 1.55 in.2

3. Thrusting β = WI - 1/2 Wp

CDA

= 2.90 oz. - 1/2(0.294 oz.)

1.55 in.2

= 2.90 oz. - 0.147oz.

0.55 in.2

= 2.753 oz.

1.55 in.2

= 1.78 oz./in.2

4. Burnout Altitude from Figure 6A = 98 ft.
Burnout Velocity from Figure 6B = 145 ft./sec.

5. Coasting β = WI - Wp

CDA

= 2.90 oz. - 0.294 oz.

1.55 in.2

= 2.606oz.

1.55 in.2

= 1.68 oz./in.2

6. Coasting Altitude = 185 ft.

Burnout Altitude
7. Apogee point = +

Coasting Altitude
= 98 ft. + 185 ft.
= 283 ft.

8. Coasting time = 2.9 sec.

The B4 engine comes with a 4 second delay.
According to our figures, the B4-4 engine would be
preferable to the B4-2 engine.



29
®

3A ASTRON STREAK (no longer available)

Just to be certain you have mastered this system, cal-
culate the apogee for an Astron Streak launched with an
A5-4 engine (no longer available).

1. Body diameter =
Rocket empty weight =
Engine = A5-4
Weight =
Propellant weight =

WI =

=
=

2. CDA =

3. Thrusting  β = _____________

= _____________

= _____________

= _____________

=

4. Burnout Altitude from Figure 4A =
Burnout Velocity from Figure 4B =

5. Coasting B = ______________

= ______________

= ______________

6. Coasting Altitude = 

7. Apogee point =

=

=

8. Coasting time =  

WORK AREA

Check your answers with those on the next page.
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3B ASTRON STREAK (no longer available)

1. Body diameter = BT-10-0.720 in.
Rocket empty weight = 0.1 oz.
Engine = A5-4 (no longer available)

Weight = 0.64 oz.
Propellant weight = 0.110 oz.

WI = Rocket empty weight + Engine weight

= 0.1 oz. + 0.64 oz.
= 0.74 oz.

2. CDA = 0.30 in.2

3. Thrusting β = WI - 1/2 Wp
CDA

= 0.74 oz. - 1/2(0.110 oz.)

0.30 in.2

= 0.74 oz. - 0.055 oz.

0.30 in.2

= 0.685 oz.

0.30 in.2

= 2.28 oz./in.2

4. Burnout Altitude from Figure 4A = 93 ft.
Burnout Velocity from Figure 4B = 370 ft./sec.

5. Coasting β = WI - Wp
CDA

= 0.74 oz. - 0.110 oz.

0.30 in.2

= 0.630 oz.

0.30 in.2

= 2.10 oz./in.2

6. Coasting Altitude = 550 ft.

7. Apogee point = Burnout Altitude + Coasting Altitude

= 93 ft. + 550 ft.

= 643 ft.

8. Coasting time = 4.6 sec.

The A5 engine does not come with a delay of over 4 sec-
onds. We can go ahead and use the A5-4 with the under-
standing that the ejection discharge will occur before the
rocket has reached the apogee point.
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4A Scrambler (no longer available)

1. Body diameter = 
Rocket empty weight =
3 engines = C6-5

Weight =
Propellant weight =

As for the Scrambler, rockets powered by a cluster of
engines employ modified formulas, since the graphs are
designed for single engine calculations. Thus we work
with the proportionate weight of the rocket being lifted by
any one of the cluster of motors.

Weight actual =

W actual =

=
=

WI = ____________

= ____________
=

2. CDA =

3. Thrusting β = _____________

= _____________

= _____________

= _____________

= _____________

=

4. Burnout Altitude from Figure 4A =
Burnout Velocity from Figure 4B =

5. Coasting β = ______________

= ______________

= ______________

= ______________

= ______________

6. Coasting Altitude = 

7. Apogee point =

=

=

8. Coasting time =  

WORK AREA

Check your answers with those on the next page.
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4B SCRAMBLER (no longer available)

1. Body diameter = BT-65-1.796 in. (using the diameter 
of the payload section, since it is 
the largest diamter of the rocket)

Rocket empty weight = 2.8 oz.
3 engines = C6-5

Weight = 0.91oz. each
Propellant weight = 0.440 oz. each

Weight actual =
Rocket empty weight + Engine weight

wactual = 2.8 oz. + 3(0.91 oz.)
= 2.8 oz. + 2.73 oz.
= 5.53 oz.

WI = Wactual

N
= 5.53 oz.

3
= 1.84 oz.

2. CDA = 1.90 in.2

3. Thrusting β = Wactual - N(1/2 Wp)

CDA

= 5.53 oz. - 3(0.440 oz.)
2

1.90 in.2

= 5.53 oz. - 3(0.22 oz.)

1.90 in.2

= 5.53 oz. - 0.660 oz.

1.90 in.2

= 4.87 oz.
1.90 in.2

4. Burnout Altitude from Figure 9A = 440 ft.
Burnout Velocity from Figure 9B = 420 ft./sec.

5. Coasting β = Wactual - N(Wp)
CDA

= 5.53 oz. - 3(0.440 oz.)

1.90 in.2

= 5.53 oz. - 1.32 oz.

1.90 in.2

= 4.21 oz.

1.90 in.2

= 2.22 oz. / in.2

6. Coasting Altitude = 640 ft.
7. Apogee point = Burnout Altitude + Coasting Altitude

= 440 ft. + 640 ft.
= 1080 ft.

8. Coasting time = 5.0 sec.

This choice of delay time was a good one.
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5A CHEROKEE-D (no longer available)

1. Body diameter = 
Rocket empty weight =
Engine = D13-7 (no longer available)

Weight =
Propellant weight =

WI = 

= 

=

2. CDA =

3. Thrusting β = _____________

= _____________

= _____________

= _____________

= _____________

4. Burnout Altitude from Figure 10A =
Burnout Velocity from Figure 10B =

5. Coasting β = ______________

= ______________

= ______________

6. Coasting Altitude = 

7. Apogee point =

=

=

8. Coasting time =  

WORK AREA

Check your answers with those on the next page.
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5B CHEROKEE-D (no longer available)

1. Body diameter = BT-55-1.325 in.
Rocket empty weight = 2.75 oz.
Engine = D13-7 (no longer available)

Weight = 1.55 oz.
Propellant weight = 0.879 oz.

WI = Rocket empty weight + Engine weight

= 2.75 oz. + 1.55 oz.
= 4.30 oz.

2. CDA = 1.00 in.2

3. Thrusting β = WI - 1/2 Wp

CDA

= 4.30 oz. - 1/2(0.879 oz.)

1.00 in.2

= 4.30 oz. - 0.440 oz.

1.00 in.2

= 3.86 oz.

1.00 in.2

= 3.86 oz./in.2

4. Burnout Altitude from Figure 10A = 320 ft.
Burnout Velocity from Figure 10B = 430 ft./sec.

5. Coasting β = WI - Wp

CDA

= 4.3 oz. - 0.879 oz.

1.00 in.2

= 3.421 oz.

1.00 in.2

= 3.421 oz./in.2

6. Coasting Altitude = 820 ft.

7. Apogee point = Burnout Altitude + Coasting Altitude

= 320 ft. + 820 ft.

= 1140 ft.

8. Coasting time = 5.8 sec.

To minimize lateral drift of the rocket as it descends under
its parachute during recovery, it is desirable to use an
engine with a delay to permit the rocket to begin to
descend before the parachute ejection occurs. Thus, the
D13-7 (no longer available) would be an appropriate
engine to use.
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HOW TO ANALYZE TWO 
OR THREE STAGE ROCKETS

In order to predict altitudes for multiple stage rockets
one must resort to suing equation (C1) and (C2). A
book of mathematical tables (such as reference 5)
must be obtained in order to evaluate the hyperbolic
sines, cosines, tangents and arc tangents (perhaps one
of your teachers can help you the first time through).

The first stage burnout velocity and altitude can be
found using the charts in the usual way. The ballistic
coefficient (β) and drag-free acceleration (a) are then
calculated for the second stage. Equations (Cl) and
(C2) use these value in conjunction with the burnout
velocity of the first stage (VBl) and the motor burn
time of second stage (tB) to obtain the altitude gained
during second stage thrusting (SB2) and the new
velocity at second stage burnout (VB ).

If it is just a two-stage vehicle it will now coast to
the peak; and so the coasting chart data can be uti-
lized as usual.

A three-stage vehicle on the other hand has to
make use of equations (C1) and (C2) again to find the
third stage burnout velocity and the increment of alti-
tude gained during third-stage thrusting. The coast
altitude and time can then be found as a function of
the ballistic coefficient (as based on the empty weight
of the third stage) and the third stage burnout velocity.

Needless to say, it is important to use weight val-
ues in your calculations that properly reflect the effect
of the booster stages falling away after they burn out.

The reason that the second and third stage data
had to be calculated, instead of just simply read from
a chart, is that there were too many variable factors.

You will notice that four variables affect the velocity
and altitude gained during second or third stage
thrusting: 1) type of rocket motor, 2) weight of rocket,
3) drag of rocket, and 4) initial velocity due to previous
stage. Single-stage rockets only have three variables
that effect velocity and altitude: 1) type of rocket
motor, 2) weight of rocket, and 3) drag of rocket.
Plotting each motor type as a separate graph for sin-
gle-stage rockets essentially reduces the number of
variables from 3 to 2, thus lending itself to plotting on
two-dimensional graph paper. Using this same proce-
dure for multiple-stage rockets still leaves us with try-
ing to plot mathematical functions of three variables
on two-dimensional graph paper.
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In order to have the burnout conditions as a reference
point to measure coast altitude and delay time, we set SB=0
and tB=0, our equation becomes:

it can readily be seen that when (t) the flight time equals
the coast time to peak (tc) the rocket will have reached its maxi-
mum altitude from burnout (Sc).

Since cos (0)=1 and In(1)=0 therefore In cos (0)=0. Note
that equation (19) is an alternate form of equation (B1) and is
useful when coast time (tc) is also computed.

Substitution for the value of tc from equation (14) into this
latest equation yields:

The dual trigonometric functions suggest some simplifying
can be done. Let us look at the right triangle:

Thus our coasting altitude formula (20) can be simplified 
to:

This is equation (B1)* for the coast altitude as can be veri-
fied by substitution of the terms comprising (βo).

The general equation for distance at any time between
burnout and peak altitudes, which is presented in the report as
equation (B3)*, is found by substituting the value of (Sc) found
in equation (19), directly into equation (18).

Thus we obtain equation (B3) as:

Some of you may be interested in verifying that the equa-
tions degenerate to the drag free projectile equations when
drag equals zero. This can easily be done by applying L’ hopi-
tal’s limit rule for CD 0.

NOTE: An easy method for finding natural logarithms of 
numbers less than 1.0 that should prove useful 
when doing hand computations involves noting:

that In(AB) = In A + In B

and In(A/B) = In A - In B

Next, assume we want to compute in(.572). This can easi-

ly be accomplished as follows:

In (.572)  In           = In (5.72) - In (10)

= 1.7440 - 2.3026

In (.572) = .5586

A remark or two concerning the use of the equations and
graphs are in order at this point. No calculated value or
burnout altitude, burnout velocity, coast altitude and coast time
can be regarded as perfectly exact. The formulas used are
based on certain assumptions as to the magnitude and
repeatability of the average thrust durations for each type
engine  Also, the slight decrease in air density as the rocket
climbs, the minor perturbations to the flight path that will surely
occur and the true propellant weight burnoff time history are

not taken into consideration.
The mathematical analysis, on the other hand, is exact

and perhaps elaborate and impressive to the uninitiated. The
disadvantage in the using of these allegedly “precise” formulas
is the possibility of being misled into thinking that the results
they yield correspond exactly to the real condition. It must be
kept in mind that the results in reality are just close approxima-
tions and are limited by the basic assumptions made.

In actuality for this work, as in altitude tracking, great pre-
cision in numerical work is not justified and slide rule calcula-
tions giving results to three significant figures are sufficient.
Admittedly, though, the crudest results obtained using the meth-
ods of this report will be much more realistic than the grossly
erroneous altitudes calculated without any consideration of
aerodynamic drag effects.

Perhaps the main value of this paper lies in the fact that it
is simple to use for all rocketeers and at the same time contains
some scientific aspects which will keep the more advanced
rocketeers busy investigating and eventually understand the
more sophisticated principles involved.

APPENDIX II 

SUGGESTIONS FOR 
EXPERIMENTS

The following experiments will require precise altitude
measurement. Setting up a two station tracking system as out-
lined in Estes Industries Technical Report TR-3, “Altitude
Tracking”, should be adequate. In addition, you will need a
scale to weigh your rockets. A stopwatch to time the ascent will
also be useful.

Experiment I

DRAG VERSUS NO-DRAG 

ALTITUDES

In this experiment you will perform some flight tests to
compare the actual altitudes reached by one of your rockets to
altitudes computed a) with drag effects, and b) without drag
effects.*  Use an aerodynamic drag 

*It is convenient to calculate the no-drag altitude of any
single stage rocket by the following formula.

STotal =                        - 1     gt B2

This formula was derived in Model Rocket News, 
Volume 4, Number 2.

coefficient of CD=.75 to start with and be sure to use a motor
that has a delay time slightly greater than the computed coast
time (tc). This will insure that your model will reach its peak alti-
tude prior to nosecone ejection. Calculate your model’s altitude
in the same manner as outlined in the sample problem.

By performing this experiment with both large and small
diameter rockets for both large and medium total impulse
motors, you will have gained a real understanding of the impor-
tance of aerodynamic drag. It will also help you realize that
neglecting the effects of drag gives completely ridiculous
results.

Experiment 2

DRAG COEFFICIENT 
MEASUREMENT

Up until now all we talked about was using Mr. G. H.
Stine’s aerodynamic drag coefficient of CD=.75 as a standard
for every rocket, inasmuch as that value was determined using
an accurate wind tunnel. This experiment uses a method
whereby a good value for the drag coefficient of a rocket can be
determined without having to build an expensive wind tunnel. All
you will have to do is fly your birds a few times and measure the
peak altitudes. That’s your favorite pastime anyway - we hope.

First calculate total altitudes for various assumed drag
coefficient values for your rocket as shown in table 1. Plot the
data as shown in Figure 11. Note that for ballistic coefficient (β)
values greater than 10 we just use β = 10 during motor burning,
and use the actual value of the coasting ballistic coefficient to
obtain our coasting altitudes and times. The reason for this can
be seen by looking at the thrusting graphs. The curves are
almost flat at B=10 and higher values of β will give no signifi-
cant increases in either burnout velocity (VB) or burnout altitude
(SB). The .5 ounce and .75 ounce curves for the bigger motors
seems to disagree with what has just been said, but one must
keep in mind that these larger motors weight almost .75 ounce
each, exclusive of the rocket. The .5 ounce and 75 ounce each,
exclusive of the rocket. The .5 ounce and .75 ounce curves
were included in these graphs for theoretical comparisons only.

Once the actual altitude reached by this rocket is meas-
ured you work backwards with this graph to determine the drag
coefficient CD. Find the point on the curve, which corresponds
with the measured altitude, and mark it. The altitude reached
will vary slightly from flight to flight so it is best to make at least
three good vertical flights and then use the average drag coeffi-
cient value obtained. You can also measure the flight time with
a stopwatch and compare that to the plotted values of total flight
time versus drag coefficient. The total flight time (tTotal) is sim-
ply the sum of the motor burn time (tB) plus the coast time (tC)

tTotal = tB + tC

Measuring both flight time and altitude for each flight gives
you two data points per flight to use instead of one per flight for
your drag coefficient measurement experiment. As a result you
save both time and money.

You might find it very interesting to repeat the experiment
using different total impulse motors. By ballasting the rocket
with say an NAR standard 1-ounce payload you can plot even
more curves by which the coefficient value can be verified. The
results of such experimentation will be surprisingly good as long
as you don’t change the external shape of paint finish between
flights. The results of such a test should come out looking
something like the graph of figure 12 and figure 13.

(The Value for the hypotenuse is found by
using the Pythagorean Theorem.)

5.72
10(    )

(    )(  )1 T T
2    W     W
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Experiment 3

DETAILED TRAJECTORY 
TIME HISTORIES

With natural larger logarithm, cosine, tangent, hyperbolic
sine, hyperbolic cosines and hyperbolic tangent tables (check
the math section of your library for books similar to reference 5).
A complete time history of the motion for the rocket whose drag
coefficient was previously determined can be calculated. Using
equations (A1) and (A2) for a few time increments from lift off to
burnout, we can calculate the corresponding velocity and dis-
tance. Similarly, after burnout we can use equations (B3) and
(B4) in conjunction with (B1) and (B2) to calculate the velocity
and altitude at various times.

To get the actual altitude time history we must add the altitude
gained during coasting to the altitude at burnout and the corre-
sponding coast flight times to the burnout time. Using the for-
mula

D=CDA1/2ρ V2 =.0001321 CDAV2

we can calculate the drag in ounces at any time. With the 
formula

a = T - D - 1
W

we obtain the net acceleration in g’s on our rocket at any time
during the upward flight.

We can verify the accuracy of our time history by using
engines which will cause ejection to occur before the peak alti-
tude is reached. The altitude at the instant of ejection should
be close to the indicated time history value at that time. For
other time points a stop watch will be required. A verbal signal
to the trackers can be given for any desired time after liftoff. It
should be noted, however, that the recorded altitudes are more
susceptible to errors during the portions of the flight when the
rocket is traveling at high velocity. A time history plot of the typi-
cal performance of an A8-4 powered 1-ounce rocket is given in
Model Rocket News, Volume 4, Number 2 (A8-4 is no longer
available).

Experiment 4

EFFECTS OF TEMPERATURE AND 
LAUNCH ALTITUDE ON ROCKET 

PERFORMANCE

From the basic drag equation D=CD
A1/2ρV

2
we can see

that lowering the air density (ρ) lowers the drag on a rocket
traveling at a given velocity and raising the air density (ρ)
increases the drag by a proportional amount. It turns out that
atmospheric density is a well-defined function of temperature
and altitude. Figure 9 presents a correction for the air density
(ρ) which properly reflects the variations in our basic motion
equations due to temperature and launch altitude.

It should be noted that rocket motor thrust is also a func-
tion of the temperature of the propellant before ignition and the
air density. Some research has been done on these effects, but
until more detailed information is available, we will just have to
neglect it.

All our previous work has been based on standard sea
level conditions, which means a temperature of 59˚F and sea
level altitude (H=0 feet). To allow for this we must know the
temperature at the time of launch and the altitude above sea
level of our launch site. We can easily obtain temperature read-
ings with a thermometer at the launch site just prior to lift-off.
The best way to determine the altitude of your site is to obtain a
topographical map for your area through the U.S. Government.

The topographical maps are inexpensive and are very
interesting in themselves. Some libraries carry sets of them
and some of the larger cities have Geological Survey offices at
which you can browse through these maps at your leisure.
Some book and office supply stores carry these items.

Each intermediate line means a rise or fall of 20’ elevation
of land surface in the sample of a topographical map shown
above. Primary lines mark each 100’, and exact figures are
given for the high and low points in the topography.

Once you have this data you can try to verify the effects
on peak altitudes. Since your launch altitude is fixed, it would
probably be easiest to make flights for which only temperature
is a variable. (Flights in early morning when it is cool and also
during the warmer afternoon temperatures should prove to be
adequate). By calculating total altitudes for our rocket at differ-
ent temperatures, we can generate a theoretical graph as
shown in Figure 14. This graph should contain all information
relative to the rocket as included on this sample. Note that
points with appropriate comments have been included to repre-
sent recorded flight test data.

If nothing else it should be enlightening to consider such
facts as that the clubs in Denver, Colorado (altitude above sea
level H=5000 feet) who try for altitude records on hot days have
a definite advantage over the rest of us in the U.S.A. If a
Denver club is out in 90-degree weather the peak theoretical
altitude reached by our 1 ounce A8-4 (no longer available) sam-
ple problem rocket becomes 780 feet. This is a very good
improvement over the 700-foot altitude obtained under the stan-
dard conditions of sea level altitude and 59˚F.

We anxiously await news of new altitude records obtained
by those who drive up Pike’s Peak in Colorado (elevation
14,110) to fly their rockets. Launched from the top of a moun-
tain at mid-afternoon temperature of 40˚F our 1-ounce A8-4 (not
available) sample problem rocket would reach 855 feet.

The drag coefficient measurement experiment can be
refined by including temperature and launch altitude effects.

The assumption that air density is uniform through the
entire flight of a model is not particularly valid for rockets, which
reach higher altitudes. It might be wiser to use the average alti-
tude upon which to base density corrections rather than the
launch altitude. This would be similar to using the average
weight during thrusting than the full or empty weight.

Using the average altitude of a 2000-foot flight would
increase the ballistic coefficient by less than 3%. In view of the
errors that arise in tracking at such altitudes, such calculations
for most of us may not merit the time spent doing them.

Experiment 5

CLUSTERS

Clustered rockets are primarily used for heavier payloads.
It would probably be very useful to know how high a cluster-
powered rocket can go for various payload weights and what
ejection delay times should be used. Actually, plotting this data
as a function of weight will be quite informative. Super-impos-
ing the corresponding data for a single motor booster of the
same shape and weight will give a clear understanding of the
performance improvements obtained by clustering.

Experiment 6

MULTIPLE STAGE ROCKETS

Perhaps one of the most interesting comparisons one
can make involves comparing the altitude reached by a
three-stage rocket using identical “type” motors (such as
1/2A6-0, and 1/2A6-4) to a two-stage rocket of identical ini-
tial total weight, size and shape, which has a cluster of two
motors for the first stage (such as two 1/2A6-0 motors in the
first stage and a 1/2A6-4 in the second stage). Both rockets
have the same total impulse input, but which will go higher?
Using the methods of this report you can predict the results
with confidence before the firing button is pushed and actual
tracking measurement is made. (1/2A6-0 engines are no
longer available.)

As one becomes more familiar with the effects of drag on
different shape and size rockets through the use of this report,
one eventually will be able to follow the above procedures even
before one starts building more complex original rockets in
order to decide, in fact, what is the best way to accomplish a
desired mission. This same type of pre-flight performance
analysis would carry the name “optimization study” if done by
the aerospace engineers and scientists who design our coun-
try’s big rockets.




